题目内容

已知函数f(x)=x3+bx2+cx+d(b≠0)在x=0处的切线方程为2x-y-1=0;
(1)求实数c,d的值;
(2)若对任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2x,试求实数b的取值范围.
分析:(1)由f′(x)=3x2+2bx+c,f(x)在x=0处的切线方程为2x-y-1=0,知f′(0)=c=2,切点坐标为(0,-1),由此能求出c和d.
(2)由f(x)=x3+bx2+cx+d(b≠0),把对任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2x等价转化为对任意x∈[1,2],均存在t∈(0,1],使得et-lnt≤x3+bx2+3.令h(t)=et-lnt,t∈(0,1],利用导数求出h(t)min=2.故原题转化为?x∈[1,2],x3+bx+3≥2恒成立.由此能求出实数b的取值范围.
解答:解:(1)∵函数f(x)=x3+bx2+cx+d(b≠0),
∴f′(x)=3x2+2bx+c,
∵f(x)在x=0处的切线方程为2x-y-1=0,
∴f′(0)=c=2,切点坐标为(0,-1),
∴f(0)=d=-1.
故c=2,d=-1.
(2)∵f(x)=x3+bx2+cx+d(b≠0),
对任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2x,
∴对任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤x3+bx2-1,
∴对任意x∈[1,2],均存在t∈(0,1],使得et-lnt≤x3+bx2+3,
令h(t)=et-lnt,t∈(0,1],
h′(t)=e-
1
t
=
et-1
t
=0
,t=
1
e

∵0<t<
1
e
时,h′(t)<0;
1
e
<t<1
时,h′(t)>0.
∴h(t)的减区间是(0,
1
e
),增区间是(
1
e
,1).
∴h(t)min=h(
1
e
)=e
1
e
-ln
1
e
=2.
∴原题转化为?x∈[1,2],x3+bx+3≥2恒成立.
∵b≥
-x3-1
x2
=-x-
1
x2

令g(x)=-x-
1
x2

g′(x)=-1+2x-3=0,得x=
32

当1<x<
32
时,g′(x)>0;当
32
<x<2时,g′(x)<0;
∴g(x)的减区间是(
32
,2),增区间是(1,
32
).
∴g(x)max=g(
32
)=-
32
-
1
34
=
-3
32
2

∴b≥
-3
32
2
,且b≠0.
故实数b的取值范围是[
-3
32
2
,0)∪(0,+∞).
点评:本题考查函数的解析式的求法,考查满足条件的实数的取值范围的求法.解题时要认真审题,注意等价转化思想、分类讨论思想、导数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网