题目内容
设函数
解:
(Ⅰ)方程
可化为
.
当
时,
.
又
,
于是
解得![]()
故
.
(Ⅱ)设
为曲线上任一点,由
知曲线在点
处的切线方程为
,
即
.
令
得
,从而得切线与直线
的交点坐标为
.
令
得
,从而得切线与直线
的交点坐标为
.
所以点
处的切线与直线
,
所围成的三角形面积为
.
故曲线
上任一点处的切线与直线
,
所围成的三角形的面积为定值,此定值为
.
练习册系列答案
相关题目
题目内容
设函数
解:
(Ⅰ)方程
可化为
.
当
时,
.
又
,
于是
解得![]()
故
.
(Ⅱ)设
为曲线上任一点,由
知曲线在点
处的切线方程为
,
即
.
令
得
,从而得切线与直线
的交点坐标为
.
令
得
,从而得切线与直线
的交点坐标为
.
所以点
处的切线与直线
,
所围成的三角形面积为
.
故曲线
上任一点处的切线与直线
,
所围成的三角形的面积为定值,此定值为
.