题目内容

设空间两个不同的单位向量
a
=(x1y1,0),
b
=(x2y2,0)
与向量
c
=(1,1,1)
的夹角都等于45°.
(1)求x1+y1和x1•y1的值;
(2)求
a
b
的大小.
(1)∵单位向量
a
=(x1y1,0)
与向量
c
=(1,1,1)
的夹角等于45°
∴|
a
|=
x21
+
y21
=1,cos45°=
a
• 
c
|a|
• 
|c|
=
1
3
(x1+y1)=
2
2

∴x1+y1=
6
2
,x1•y1=-
1
4

(2)同理可知x2+y2=
2
2
,x2•y2=-
1
4

∴x1•x2=-
1
4
,y1•y2=-
1
4

cos
a
b
=
a
b
|a|
|b|
=x1•x2+y1•y2=-
1
2

a
b
=120°
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网