题目内容
3.用反证法证明命题:若整系数方程ax2+bx+c=0(a≠0)存在有理根,那么a,b,c中至少有一个偶数,则应假设a,b,c都不是偶数.分析 利用反证法证明的步骤,从问题的结论的反面出发否定即可.
解答 解:∵用反证法证明:若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数,
∴假设a、b、c都不是偶数.
故答案为:都不是偶数.
点评 此题主要考查了反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
练习册系列答案
相关题目
18.下列函数中,既是偶函数又是在区间(-∞,0)上单调递增的函数是( )
| A. | y=ln|x| | B. | y=x2 | C. | y=tanx | D. | y=2-|x| |
13.某同学在研究性学习中,收集到某制药厂今年2-6月甲胶囊产量(单位:千盒)的数据如表所示:
若该同学用最小二乘法求线性回归方程,则可预测得该厂10月份生产的甲胶囊为12.38千盒.
参考数据:22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.
| 月份x | 2 | 3 | 4 | 5 | 6 |
| y(千盒) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
参考数据:22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.