题目内容

已知双曲线C与椭圆9x2+25y2=225有相同的焦点,且离心率e=2.
(1)求双曲线C的方程;
(2)若P为双曲线右支上一点,F1、F2为其焦点,且PF1⊥PF2,求△PF1F2的面积.
(1)设双曲线C的方程为
x2
a2
-
y2
b2
=1 (a>0,b>0)

椭圆9x2+25y2=225 可化为 
x2
25
+
y2
9
=1

c=
25-9
=4

e=
c
a
=2
∴a=2
∴b2=c2-a2=16-4=12
∴所求双曲线方程为 
x2
4
-
y2
12
=1
(6分)
(2)由已知得
|PF1|-|PF2 =4                    ①
|PF1| 2+|PF2| 2=|F1F2| 2=64   ②

②-①2得2|PF1|•|PF2|=48
∴|PF1|•|PF2|=24
S△PF1F2=
1
2
|PF1| • |PF2| =12
(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网