题目内容

1.△ABC的三个内角A,B,C的对边分别为a,b,c,且asinB=bcosA,则$2sinB-\sqrt{2}cosC$的最大值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

分析 利用正弦定理以及两角和的正弦函数求出A的值,通过内角和化简所求表达式为B的三角函数,然后求出表达式的最大值.

解答 解:由asinB=bcosA以及正弦定理可知sinAsinB=sinBcosA,⇒A=$\frac{π}{4}$,
∴$2sinB-\sqrt{2}cosC$
=2sinB-$\sqrt{2}$cos($\frac{3π}{4}$-B)
=2sinB-$\sqrt{2}$(cos$\frac{3π}{4}$cosB+sin$\frac{3π}{4}$sinB)
=2sinB+$\sqrt{2}$×$\frac{\sqrt{2}}{2}$cosB-$\sqrt{2}$×$\frac{\sqrt{2}}{2}$sinB
=2sinB+cosB-sinB
=$\sqrt{2}$sin($\frac{π}{4}$+B).
∴$2sinB-\sqrt{2}cosC$的最大值为$\sqrt{2}$.
故选:A.

点评 本题考查正弦定理的应用,三角函数中的恒等变换的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网