题目内容
已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为
______.
易知原函数在R上单调递增,且为奇函数,故f(mx-2)+f(x)<0?f(mx-2)<-f(x)=f(-x),此时应有mx-2<-x?xm+x-2<0,对所有m∈[-2,2]恒成立,令f(m)=xm+x-2,此时只需
即可,解之得-2<x<
.
故答案为:(-2,
)
|
| 2 |
| 3 |
故答案为:(-2,
| 2 |
| 3 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|