题目内容
设数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若bn=an•2an,求数列{bn}的前n项和Sn;
(Ⅲ)若cn=
,求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若bn=an•2an,求数列{bn}的前n项和Sn;
(Ⅲ)若cn=
| 2an |
| (2an)2+3•2an+2 |
(Ⅰ)∵数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列,
∴
=
=
=
=2,
∴1+5d=2(1+2d),
解得d=1,
∴an=n.….(4分)
(Ⅱ)∵an=n,∴bn=an•2an=n•2n
∴数列{bn}的前n项和Sn=1×2+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Sn=2+22+23+24+…+2n-n×2n+1
=
-n×2n+1
=-(2-2n+1+n×2n+1),
∴Sn=2-2n+1+n×2n+1=(n-1)•2n+1+2.….(13分)
(Ⅲ)∵an=n,
∴cn=
=
=
=
=
-
,
∴数列{cn}的前n项和
Tn=(
-
)+(
-
)+…+(
-
)=
-
.…(13分)
∴
| a12 |
| a6 |
| a6 |
| a3 |
| a12-a6 |
| a6-a3 |
| 6d |
| 3d |
∴1+5d=2(1+2d),
解得d=1,
∴an=n.….(4分)
(Ⅱ)∵an=n,∴bn=an•2an=n•2n
∴数列{bn}的前n项和Sn=1×2+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Sn=2+22+23+24+…+2n-n×2n+1
=
| 2×(1-2n) |
| 1-2 |
=-(2-2n+1+n×2n+1),
∴Sn=2-2n+1+n×2n+1=(n-1)•2n+1+2.….(13分)
(Ⅲ)∵an=n,
∴cn=
| 2an |
| (2an)2+3•2an+2 |
=
| 2n |
| (2n)2+3×2n+2 |
=
| 2n |
| (2n+1)(2n+2) |
=
| 2n-1 |
| (2n+1)(2n-1+1) |
=
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
∴数列{cn}的前n项和
Tn=(
| 1 |
| 20+1 |
| 1 |
| 21+1 |
| 1 |
| 21+1 |
| 1 |
| 22+1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
练习册系列答案
相关题目