题目内容

设数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=an2an,求数列{bn}的前n项和Sn
(Ⅲ)若cn=
2an
(2an)2+3•2an+2
,求数列{cn}的前n项和Tn
(Ⅰ)∵数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列,
a12
a6
=
a6
a3
=
a12-a6
a6-a3
=
6d
3d
=2,
∴1+5d=2(1+2d),
解得d=1,
∴an=n.….(4分)
(Ⅱ)∵an=n,∴bn=an2an=n•2n
∴数列{bn}的前n项和Sn=1×2+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Sn=2+22+23+24+…+2n-n×2n+1
=
2×(1-2n)
1-2
-n×2n+1
=-(2-2n+1+n×2n+1),
∴Sn=2-2n+1+n×2n+1=(n-1)•2n+1+2.….(13分)
(Ⅲ)∵an=n,
cn=
2an
(2an)2+3•2an+2

=
2n
(2n)2+3×2n+2

=
2n
(2n+1)(2n+2)

=
2n-1
(2n+1)(2n-1+1)

=
1
2n-1+1
-
1
2n+1

∴数列{cn}的前n项和
Tn=(
1
20+1
-
1
21+1
)+(
1
21+1
-
1
22+1
)+…+(
1
2n-1+1
-
1
2n+1
)=
1
2
-
1
2n+1
.…(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网