题目内容
【题目】已知椭圆
及点
,若直线
与椭圆
交于点
,且
(
为坐标原点),椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)若斜率为
的直线
交椭圆
于不同的两点
,求
面积的最大值.
【答案】(1)
;(2)1.
【解析】试题分析:
由椭圆的离心率公式得到
,设点
在第一象限,由椭圆的对称性可知
,所以
,进而求得点
的坐标,然后联立方程求得
,即可得到椭圆
的标准方程;
设直线
的方程为
,联立椭圆方程,求得
或
,设
,求出
的值,又由题意得,
到直线
的距离
,进而求得
面积的最大值
解析:(1)由椭圆
的离心率为
,得
,所以
.
设点
在第一象限,由椭圆的对称性可知
,所以
,
因为点
坐标为
,所以点
坐标为
,
代入椭圆
的方程得
,与
联立,
可得
,所以椭圆
的标准方程为
.
(2)设直线
的方程为
,由
得
.
由题意得,
,
整理得
,所以
或
.
设
,则
,
所以![]()
.
又由题意得,
到直线
的距离
.
的面积![]()
当且仅当
,即
时取等号,且此时满足
,
所以
面积的最大值为1.
练习册系列答案
相关题目
【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
![]()
(1)填写下表:
平均数 | 方差 | 中位数 | 命中9环及以上 | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 | 3 |
(2)请从四个不同的角度对这次测试进行①结合平均数和方差分析离散程度;②结合平均数和中位数分析谁的成绩好些;③结合平均数和命中9环及以上的次数看谁的成绩好些;④从折线图上看两人射靶命中环数及走势分析谁更有潜力.