题目内容
(1)求(log43+log83)(log32+log92)-log
的值.
(2)已知a=8,b=-2,求[a-
b(ab-2)-
(a-1)-
]2的值.
| 1 |
| 2 |
| 4 | 8 |
(2)已知a=8,b=-2,求[a-
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
(1)原式=(log223+log233)(log32+log322)-log
2
=(
log23+
log2 3)(log32+
log3 2)+
=
×
×log23×log32+
=
+
=2.
(2)所化简的式子=[a-
ba-
b-2×(-
) a-1×(-
) ]2
=(a-1+
b1+1)2=a-
b4.,
代入a=8,b=-2,
计算得出原式的值为(23)-
×(-2)4=
×16=4.
| 1 |
| 2 |
| 3 |
| 4 |
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
| 4 |
=
| 5 |
| 6 |
| 3 |
| 2 |
| 3 |
| 4 |
| 5 |
| 4 |
| 3 |
| 4 |
(2)所化简的式子=[a-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
=(a-1+
| 2 |
| 3 |
| 2 |
| 3 |
代入a=8,b=-2,
计算得出原式的值为(23)-
| 2 |
| 3 |
| 1 |
| 4 |
练习册系列答案
相关题目