题目内容
已知函数f(x)=x2-1,g(x)=m|x-1|(m∈R).
(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数m的取值范围;
(2)若当x∈R时,关于x的不等式f(x)≥g(x)恒成立,求实数m的取值范围;
(3)求函数h(x)=|f(x)|+g(x)在区间[0,2]上的最大值(直接写出结果,不需给出演算步骤).
(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数m的取值范围;
(2)若当x∈R时,关于x的不等式f(x)≥g(x)恒成立,求实数m的取值范围;
(3)求函数h(x)=|f(x)|+g(x)在区间[0,2]上的最大值(直接写出结果,不需给出演算步骤).
| 查看本题解析需要登录 | |
| 查看解析 | 如何获取优点?普通用户:2个优点。 |
| 如何申请VIP用户?VIP用户:请直接登录即可查看。 | |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|