题目内容
求 值:(1)(2
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 2 |
| 3 |
| 3 |
| 2 |
(2)(lg5)2+lg2×lg50.
分析:(1)本题中各数都是指数幂的形式,故可以用有理数指数幂的运算法则将(2
)
-(-2008)0-(3
)-
+(
)-2化简求值,变形方向是把底数变为幂的形式,用积的运算法则化简.
(2)本题中各数都是对数的形式,利用对数的运算法则将(lg5)2+lg2×lg50化简求值即可,首先将50变为25×2.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 2 |
| 3 |
| 3 |
| 2 |
(2)本题中各数都是对数的形式,利用对数的运算法则将(lg5)2+lg2×lg50化简求值即可,首先将50变为25×2.
解答:解:(1)(2
)
-(-2008)0-(3
)-
+(
)-2
=(
)
-1-(
)-
+(
)2
=
-1-(
)
+
=
-
+
=
(2)解:(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+1)
=(lg5)2+lg2×lg5+lg2
=(lg5+lg2)×lg5+lg2
=1×lg5+lg2
=1.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 2 |
| 3 |
| 3 |
| 2 |
=(
| 9 |
| 4 |
| 1 |
| 2 |
| 27 |
| 8 |
| 2 |
| 3 |
| 2 |
| 3 |
=
| 3 |
| 2 |
| 8 |
| 27 |
| 2 |
| 3 |
| 4 |
| 9 |
=
| 1 |
| 2 |
| 4 |
| 9 |
| 4 |
| 9 |
=
| 1 |
| 2 |
(2)解:(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+1)
=(lg5)2+lg2×lg5+lg2
=(lg5+lg2)×lg5+lg2
=1×lg5+lg2
=1.
点评:本题考点是有理数指数幂的化简求值,考查熟练运用指数与对数的运算法则化简求值,指对数的运算法则是指对数运算的基础,学习时应好好掌握理解.
练习册系列答案
相关题目