题目内容

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.
分析:解法一(空间向量法)(1)建立空间坐标系,设F是线段CE的中点,求出直线BF的方向向量和平面ACD的法向量,根据两个向量垂直可得线面平行;
(2)分别求出平面BCD与平面ACD的法向量,代入向量夹角公式,求出两个向量夹角的余弦值,进而可得二面角的大小
(3)求出BG的方向向量的坐标,进而根据d=|
n
BG
|
n
|
|
,可得点G到平面BCE的距离
解法二(几何法)(1)根据三角形中位线定理及平行四边形的判定和性质,可得BF∥AH,进而由线面平行的判定定理得到BF∥平面ACD
(2)由已知条件可知△ACD即为△BCE在平面ACD上的射影,分别求出两个三角形的面积,代入cosθ=
S△ACD
S△BCE
,可得二面角的大小
(3)连接BG、CG、EG,得三棱锥C-BGE,进而利用等积法,可求出点G到平面BCE的距离.
解答:解:解法一(空间向量法):
以D点为原点建立如图所示的空间直角坐标系,使得x轴和z轴的正半轴分别经过点A和点E,则各点的坐标为D(0,0,0),B(2,0,1),E(0,0,2),C(1,
3
,0),
(1)点F应是线段CE的中点,下面证明:
设F是线段CE的中点,则点F的坐标为(
1
2
3
2
,1),
BF
=(-
3
2
3
2
,0)
又∵
DE
=(0,0,2)为平面ACD的一个法向量
BF
DE
=0
∴BF∥平面ACD;       …(4分)
(2)设平面BCE的法向量为
n
=(x,y,z),
n
CB
,且
n
CE

CB
=(1,-
3
,1),
CE
=(-1,-
3
,2)得,
x-
3
y+z=0
-x-
3
y+2z=0

不妨设y=
3
,则
n
=(1,
3
,2)
又∵
DE
=(0,0,2)为平面ACD的一个法向量
∴所求角θ满足cosθ=
n
DE
|
n
|•|
DE
|
=
2
2

∴平面BCE与平面ACD所成锐二面角的大小为
π
4
;       …(8分)
(3)由已知G点坐标为(1,0,0),
BG
=(-1,0,-1),
由(2)平面BCE的法向量为
n
=(1,
3
,2)
∴所求距离d=|
n
BG
|
n
|
|
=
3
4
2
.                        …(12分)
解法二:(几何法)
(1)由已知AB⊥平面ACD,DE⊥平面ACD,
∴AB∥ED,
设F为线段CE的中点,H是线段CD的中点,
连接FH,则FH∥ED且FH=ED,
∴FH∥AB且FH=AB,…(2分)
∴四边形ABFH是平行四边形,
∴BF∥AH,
由BF?平面ACD内,AH?平面ACD,
∴BF∥平面ACD;…(4分)
(2)由已知条件可知△ACD即为△BCE在平面ACD上的射影,
设所求的二面角的大小为θ,则cosθ=
S△ACD
S△BCE
,…(6分)
易求得BC=BE=
5
,CE=2
2

∴S△BCE=
6

而S△ACD=
3

∴cosθ=
S△ACD
S△BCE
=
2
2

∴θ=
π
4
;          …(8分)
(3)连接BG、CG、EG,得三棱锥C-BGE,
由ED⊥平面ACD,
∴平面ABED⊥平面ACD,
又CG⊥AD,
∴CG⊥平面ABED,
设G点到平面BCE的距离为h,
则VC-BGE=VG-BCE=
1
3
S△BCE•GC=
1
3
S△BCE•h,
由S△BCE=
6
,S△BGE=
3
2
,CG=
3

∴h=
3
4
2
即为点G到平面BCE的距离.…(12分)
点评:本题考查的知识点是二面角的平面角,棱锥的体积,直线与平面平行的判定,其中方法一建立空间坐标系将空间线面关系转化为向量关系,是常用的解题方法,要求熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网