题目内容
若正实数x,y满足条件ln(x+y)=0,则| 1 |
| x |
| 1 |
| y |
分析:由题意可得 x+y=1≥2
,∴xy≤
,故
≥4.则
+
=
=
≥4.
| xy |
| 1 |
| 4 |
| 1 |
| xy |
| 1 |
| x |
| 1 |
| y |
| x+y |
| xy |
| 1 |
| xy |
解答:解:∵正实数x,y满足条件 ln(x+y)=0,∴x+y=1≥2
,∴xy≤
,故
≥4.
则
+
=
=
≥4,
故答案为:4.
| xy |
| 1 |
| 4 |
| 1 |
| xy |
则
| 1 |
| x |
| 1 |
| y |
| x+y |
| xy |
| 1 |
| xy |
故答案为:4.
点评:本题考查 基本不等式的应用,得到x+y=1≥2
,是解题的关键.
| xy |
练习册系列答案
相关题目