题目内容
已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x3+x-2的零点分别为x1,x2,x3,则
- A.x3<x1<x2
- B.x1<x3<x2
- C.x2<x3<x1
- D.x1<x2<x3
D
分析:利用估算方法,将各函数的零点问题确定出大致区间进行零点的大小比较即可
解答:由f(x)=x+2x=0可得2x=-x,则零点必定小于零,即x1<0
∵g(x)=x+lnx在(0,1单调递增,且g(1)>0,则g(x)的零点必位于(0,1)内,
函数h(x)=x3+x-2在R上单调递增,且g(1)<0,g(2)>0,则g(x)零点x3∈(1,2)
故x1<x2<x3.
故选D
点评:本题考查函数零点的定义,函数零点就是相应方程的根,利用估算方法比较出各函数零点的大致位置,进而比较出各零点的大小.
分析:利用估算方法,将各函数的零点问题确定出大致区间进行零点的大小比较即可
解答:由f(x)=x+2x=0可得2x=-x,则零点必定小于零,即x1<0
∵g(x)=x+lnx在(0,1单调递增,且g(1)>0,则g(x)的零点必位于(0,1)内,
函数h(x)=x3+x-2在R上单调递增,且g(1)<0,g(2)>0,则g(x)零点x3∈(1,2)
故x1<x2<x3.
故选D
点评:本题考查函数零点的定义,函数零点就是相应方程的根,利用估算方法比较出各函数零点的大致位置,进而比较出各零点的大小.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|