题目内容
定义:若函数f(x)对于其定义域内的某一数x0,有 f (x0)=x0,则称x0是f (x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1 (a≠0).
(Ⅰ)当a=1,b=-2时,求函数f(x)的不动点;
(Ⅱ)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
对称,求b的最小值.
(Ⅰ)当a=1,b=-2时,求函数f(x)的不动点;
(Ⅱ)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
| a |
| 5a2-4a+1 |
(Ⅰ)当a=1,b=-2时,有f (x)=x2-x-3,
令x2-x-3=x,化简得:x2-2x-3=0,
解得:x1=-1,或x2=3
故所求的不动点为-1或3.(4分)
(Ⅱ)令ax2+(b+1)x+b-1=x,则ax2+bx+b-1=0①
由题意,方程①恒有两个不等实根,所以△=b2-4a(b-1)>0,
即b2-4ab+4a>0恒成立,(6分)
整理得b2-4ab+4a=(b-2a)2+4a-4a2>0,
故4a-4a2>0,即0<a<1(8分)
(Ⅲ)设A(x1,x1),B(x2,x2)(x1≠x2),则kAB=1,∴k=-1,
所以y=-x+
,(9分)
又AB的中点在该直线上,所以
=-
+
,
∴x1+x2=
,
而x1、x2应是方程①的两个根,所以x1+x2=-
,即-
=
,
∴b=-
(12分)
=-
=
∴当a=
∈(0,1)时,bmin=-1.(14分)
令x2-x-3=x,化简得:x2-2x-3=0,
解得:x1=-1,或x2=3
故所求的不动点为-1或3.(4分)
(Ⅱ)令ax2+(b+1)x+b-1=x,则ax2+bx+b-1=0①
由题意,方程①恒有两个不等实根,所以△=b2-4a(b-1)>0,
即b2-4ab+4a>0恒成立,(6分)
整理得b2-4ab+4a=(b-2a)2+4a-4a2>0,
故4a-4a2>0,即0<a<1(8分)
(Ⅲ)设A(x1,x1),B(x2,x2)(x1≠x2),则kAB=1,∴k=-1,
所以y=-x+
| a |
| 5a2-4a+1 |
又AB的中点在该直线上,所以
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| a |
| 5a2-4a+1 |
∴x1+x2=
| a |
| 5a2-4a+1 |
而x1、x2应是方程①的两个根,所以x1+x2=-
| b |
| a |
| b |
| a |
| a |
| 5a2-4a+1 |
∴b=-
| a2 |
| 5a2-4a+1 |
=-
| 1 | ||||
(
|
| 1 | ||
(
|
∴当a=
| 1 |
| 2 |
练习册系列答案
相关题目
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,
)上不是凸函数的是( )
| π |
| 2 |
| A、f(x)=sinx+cosx |
| B、f(x)=lnx-2x |
| C、f(x)=-x3+2x-1 |
| D、f(x)=-xe-x |
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=[(f′(x)]′.若f”(x)>0在D上恒成立,则称f(x)在D上为凹函数.以下四个函数在(0,
)上不是 凹函数的是( )
| π |
| 2 |
| A、f(x)=1-sinx |
| B、f(x)=ex-2x |
| C、f(x)=x3-x2-1 |
| D、f(x)=-xe-x |