题目内容
已知函数f(x)=x3+ax2+bx 在x=1处有极值为10,则f(2)等于______.
∵f(x)=x3+ax2+bx,
∴f′(x)=3x2+2ax+b,
∵函数f(x)=x3+ax2+bx 在x=1处有极值为10,
∴
,解得a=-12,b=21,
∴f(x)=x3-12x2+21x,
∴f(2)=23-12×22+21×2=2.
故答案为:2.
∴f′(x)=3x2+2ax+b,
∵函数f(x)=x3+ax2+bx 在x=1处有极值为10,
∴
|
∴f(x)=x3-12x2+21x,
∴f(2)=23-12×22+21×2=2.
故答案为:2.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|