题目内容

求值:(1+tan1°)·(1+tan2°)·…·(1+tan44°)·(1+tan45°).

思路分析:注意到问题中的角的特点:1°+44°=2°+43°=45°,然后变式应用.

解:∵(1+tan1°)·(1+tan44°)

=1+(tan1°+tan44°)+tan1°·tan44°

=1+tan45°(1-tan1°·tan44°)+tan1°·tan44°

=1+1=2,

    依次类推,得原式=222·(1+tan45°)=223.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网