题目内容
求证:
+
+…+
>
(n≥2,n∈N*).
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
| 5 |
| 6 |
证明:(1)当n=2时,左边=
+
+
+
=
>
=
,不等式成立;
(2)假设n=k(k≥2,k∈N*)时命题成立,即
+
+…+
>
成立.
则当n=k+1时,左边=
+
+…+
+
+
+
=
+
+…+
+(
+
+
-
)
>
+(3×
-
)=
.
所以当n=k+1时不等式也成立.
综上由(1)(2)可知:原不等式对任意n≥2(n∈N*)都成立.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 57 |
| 60 |
| 50 |
| 60 |
| 5 |
| 6 |
(2)假设n=k(k≥2,k∈N*)时命题成立,即
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 3k |
| 5 |
| 6 |
则当n=k+1时,左边=
| 1 |
| (k+1)+1 |
| 1 |
| (k+1)+2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
| 1 |
| 3(k+1) |
=
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
| 1 |
| 3k+2 |
| 1 |
| 3k+3 |
| 1 |
| k+1 |
>
| 5 |
| 6 |
| 1 |
| 3k+3 |
| 1 |
| k+1 |
| 5 |
| 6 |
所以当n=k+1时不等式也成立.
综上由(1)(2)可知:原不等式对任意n≥2(n∈N*)都成立.
练习册系列答案
相关题目