题目内容

9.钓鱼岛自古以来就是我国的神圣领土.为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持40海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一艘某国海上保安厅舰船C.
(1)求cos∠ACB的值;(保留2个有效数字,$\sqrt{2}$=1.14,$\sqrt{3}$=1.732)
(2)海监船B奉命以每小时45海里的速度前往C处对某国舰船进行驱逐,那么海监船B到达C处最少需要多少时间?(假定舰船C在原处不动,结果保留一位小数)

分析 (1)过B作BD⊥AC 于D,求出∠ACB,然后求解余弦函数值即可.
(2)在Rt△ABD中求出BD,在Rt△BCD中,求出BC,然后求解海监船B需要的时间.

解答 解:(1)过B作BD⊥AC 于D,
由题意可知,∠BAC=45°,∠ABC=105°,
∴∠ACB=180°-∠BAC-∠ABC=30°,
所以cos∠ACB=$\frac{{\sqrt{3}}}{2}≈$0.87;
(2)在Rt△ABD中BD=AB•sin∠BAD=40×$\frac{\sqrt{2}}{2}$=20$\sqrt{2}$(海里),
在Rt△BCD中,BC=$\frac{BD}{sin∠BCD}$=$\frac{20\sqrt{2}}{\frac{1}{2}}$=40$\sqrt{2}$(海里)∴海监船B需要$\frac{40\sqrt{2}}{45}$=1.3小时,
答:海监船B赶往C处最少需要1.3小时.

点评 本题考查三角形的解法,解三角形的实际应用,考查分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网