ÌâÄ¿ÄÚÈÝ
ÍÖÔ²C1£º
+
=1£¨a£¾b£¾0£©µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ2£¬F1¡¢F2·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬Ö±Ïßl1¹ýµãF1ÇÒ´¹Ö±ÓÚÍÖÔ²µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±l1ÓÚµãP£¬Ïß¶ÎPF2´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM
£¨1£©ÇóÍÖÔ²C1µÄ±ê×¼·½³ÌºÍ¶¯µãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨2£©¹ýÍÖÔ²C1µÄÓÒ½¹µãF2×÷бÂÊΪ1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬Çó¡÷ABF1µÄÃæ»ý£®
£¨3£©Éè¹ì¼£C2ÓëxÖá½»ÓÚµãQ£¬²»Í¬µÄÁ½µãR¡¢SÔڹ켣C2ÉÏ£¬
Âú×ã
•
=0ÇóÖ¤£ºÖ±ÏßRSºã¹ýxÖáÉϵ͍µã£®
| x2 |
| a2 |
| y2 |
| b2 |
£¨1£©ÇóÍÖÔ²C1µÄ±ê×¼·½³ÌºÍ¶¯µãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨2£©¹ýÍÖÔ²C1µÄÓÒ½¹µãF2×÷бÂÊΪ1µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬Çó¡÷ABF1µÄÃæ»ý£®
£¨3£©Éè¹ì¼£C2ÓëxÖá½»ÓÚµãQ£¬²»Í¬µÄÁ½µãR¡¢SÔڹ켣C2ÉÏ£¬
Âú×ã
| QR |
| QS |
·ÖÎö£º£¨1£©ÓÉÌâÉèÖª£º2a=4£¬¼´a=2£¬2c=2£¬¼´c=1£¬b2=a2-c2=3£¬¹ÊÍÖÔ²·½³ÌΪ
+
=1£¬ÓÉMP=MF2£¬Öª¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-1£¬µÄ¾àÀëµÈÓÚËüµ½¶¨µãF1£¨1£¬0£©µÄ¾àÀ룬ÓÉ´ËÄÜÇó³öµãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨2£©
ÏûÈ¥x²¢ÕûÀíµÃ£º7y2+6y-9=0£¬ÉèA£¨x3£¬y3£©£¬B£¨x4£¬y4£©Ôòy3+y4=-
£¬y3y4=-
£¬ÓÉ´ËÄÜÇó³ö¡÷ABF1µÄÃæ»ý£®
£¨3£©Q£¨0£¬0£©£¬ÉèR(
£¬y1) £¬S(
£¬y2)£¬kRS=
=
£¬ÓÉ
•
=0£¬Öª
+y1y2=0£¬ÓÉÌâÉèÖªÖ±ÏßRSºã¹ý¶¨µã£¨4£¬0£©£®
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©
|
| 6 |
| 7 |
| 9 |
| 7 |
£¨3£©Q£¨0£¬0£©£¬ÉèR(
| y12 |
| 4 |
| y22 |
| 4 |
| y2-y1 | ||||
|
| 4 |
| y1+y2 |
| QR |
| QS |
| ||||
| 16 |
½â´ð£º½â£º£¨1£©ÓÉÌâÉèÖª£º2a=4£¬¼´a=2£¬2c=2£¬¼´c=1£¬b2=a2-c2=3£¬¹ÊÍÖÔ²·½³ÌΪ
+
=1£¬ÓÉMP=MF2£¬Öª
¡à¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-1£¬µÄ¾àÀëµÈÓÚËüµ½¶¨µãF1£¨1£¬0£©µÄ¾àÀ룬
¡à¶¯µãMµÄ¹ì¼£ÊÇCΪl1×¼Ïߣ¬F2Ϊ½¹µãµÄÅ×ÎïÏß
¡àµãMµÄ¹ì¼£C2µÄ·½³ÌΪy2=4x£¨5·Ö£©
£¨2£©
ÏûÈ¥x²¢ÕûÀíµÃ£º7y2+6y-9=0
ÉèA£¨x3£¬y3£©£¬B£¨x4£¬y4£©Ôòy3+y4=-
£¬y3y4=-
£¨7·Ö£©S¡÷ABF1=
|F1F2|•|y3-y4|=|y3-y4|=
=
£¨9·Ö£©
£¨3£©Q£¨0£¬0£©£¬ÉèR(
£¬y1) £¬S(
£¬y2)£¬kRS=
=
£¨10·Ö£©¡ß
•
=0¡à
+y1y2=0¡ßy1¡Ù0£¬y2¡Ù0¡ày1y2=-16x1x2=16£¨11·Ö£©¡àÖ±ÏßRS£ºy-y1=
(x-x1)¡ày=
x+y1-
¡ày=
x+
=
x+
=
x+
=
x+
=
(x-4)£¨13·Ö£©
¹ÊÖ±ÏßRSºã¹ý¶¨µã£¨4£¬0£©£¨14·Ö£©
| x2 |
| 4 |
| y2 |
| 3 |
¡à¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-1£¬µÄ¾àÀëµÈÓÚËüµ½¶¨µãF1£¨1£¬0£©µÄ¾àÀ룬
¡à¶¯µãMµÄ¹ì¼£ÊÇCΪl1×¼Ïߣ¬F2Ϊ½¹µãµÄÅ×ÎïÏß
¡àµãMµÄ¹ì¼£C2µÄ·½³ÌΪy2=4x£¨5·Ö£©
£¨2£©
|
ÉèA£¨x3£¬y3£©£¬B£¨x4£¬y4£©Ôòy3+y4=-
| 6 |
| 7 |
| 9 |
| 7 |
| 1 |
| 2 |
| (y3+y4)2-4y3y4 |
12
| ||
| 7 |
£¨3£©Q£¨0£¬0£©£¬ÉèR(
| y12 |
| 4 |
| y22 |
| 4 |
| y2-y1 | ||||
|
| 4 |
| y1+y2 |
| QR |
| QS |
| ||||
| 16 |
| 4 |
| y1+y2 |
| 4 |
| y1+y2 |
| 4x1 |
| y1+y2 |
| 4 |
| y1+y2 |
| y1(y1+y2)-4x1 |
| y1+y2 |
| 4 |
| y1+y2 |
| ||||||
| y1+y2 |
| 4 |
| y1+y2 |
| y1y2 |
| y1+y2 |
| 4 |
| y1+y2 |
| -16 |
| y1+y2 |
| 4 |
| y1+y2 |
¹ÊÖ±ÏßRSºã¹ý¶¨µã£¨4£¬0£©£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµ£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿