题目内容
12.在△ABC中,a=3$\sqrt{3}$,b=2,cosC=$-\frac{{\sqrt{3}}}{2}$,则c等于( )| A. | 13 | B. | $\sqrt{13}$ | C. | 7 | D. | 9 |
分析 由已知利用余弦定理即可求值得解.
解答 解:∵a=3$\sqrt{3}$,b=2,cosC=$-\frac{{\sqrt{3}}}{2}$,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=$\sqrt{27+4-2×3\sqrt{3}×2×(-\frac{\sqrt{3}}{2})}$=7.
故选:C.
点评 本题主要考查了余弦定理的应用,属于基础题.
练习册系列答案
相关题目
2.
在某海滨小城打的士收费办法如下:不超过3公里收8元,超过3公里的里程每公里收2.6元,另每车次超过3公里收燃油附加费1元(其他因素不考虑).相应x>3收费系统的流程图如图所示,则①处应填( )
| A. | y=8+2.6x | B. | y=9+2.6x | C. | y=8+2.6(x-3) | D. | y=9+2.6(x-3) |
20.
某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.
附:线性回归方程:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.
附:线性回归方程:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.
7.已知$sin(α+\frac{π}{3})+sinα$=-$\frac{{4\sqrt{3}}}{5},-\frac{π}{2}$<α<0,则cosα=( )
| A. | $\frac{{3\sqrt{3}+4}}{10}$ | B. | $\frac{{3\sqrt{3}-4}}{10}$ | C. | $\frac{{4-3\sqrt{3}}}{10}$ | D. | $-\frac{{3\sqrt{3}+4}}{10}$ |
4.为了考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校的高中生中随机地抽取了300名学生进行调查,得到如下列联表:
由表中数据计算K2≈4.513,判断高中生的性别与是否喜欢数学课程之间是否有关系,并说明理由.
| 喜欢数学 | 不喜欢数学 | 总计 | |
| 男 | 37 | 85 | 122 |
| 女 | 35 | 143 | 178 |
| 总计 | 72 | 228 | 300 |