题目内容
已知函数f(x)=x2+2xf′(1),则f(-1)与f(1)的大小关系是( )
| A.f(-1)=f(1) | B.f(-1)>f(1) | C.f(-1)<f(1) | D.不能确定 |
由f(x)=x2+2xf′(1),求导得f′(x)=2x+2f′(1),
把x=1代入得:f′(1)=2+2f′(1),
解得:f′(1)=-2,∴f(x)=x2-4x,
∴f(-1)=(-1)2-4×(-1)=5,f(1)=12-4×1=-3,
则f(-1)>f(1).
故选B
把x=1代入得:f′(1)=2+2f′(1),
解得:f′(1)=-2,∴f(x)=x2-4x,
∴f(-1)=(-1)2-4×(-1)=5,f(1)=12-4×1=-3,
则f(-1)>f(1).
故选B
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|