题目内容
(2009•南汇区二模)
=
.
| lim |
| n→∞ |
| ||
| 2n2+1 |
| 1 |
| 4 |
| 1 |
| 4 |
分析:先由组合数计算公式把
等价转化为
=
,再由极限的运算法则进行计算.
| lim |
| n→∞ |
| ||
| 2n2+1 |
| lim |
| n→∞ |
| ||
| 2n2+1 |
| lim |
| n→∞ |
| n2-1 |
| 4n2+2 |
解答:解:
=
=
=
=
.
故答案为:
.
| lim |
| n→∞ |
| ||
| 2n2+1 |
=
| lim |
| n→∞ |
| ||
| 2n2+1 |
=
| lim |
| n→∞ |
| n2-1 |
| 4n2+2 |
=
| lim |
| n→∞ |
1-
| ||
4+
|
=
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
点评:本题考查极限的运算,解题时要注意组合数计算公式的灵活运用.
练习册系列答案
相关题目