题目内容

12、某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员.此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次.甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?
分析:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.
解答:解:设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,
那么x+y≤9,10×6x+6×8x≥360,
0≤x≤4,0≤y≤7.z=252x+160y,
其中x、y∈N.
作出不等式组所表示的平面区域,即可行域,如图.
作出直线l0:252x+160y=0,把直线l向右上方平移,
使其经过可行域上的整点,且使在y轴上的截距最小.
观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.
此时,z=252x+160y取得最小值,
即x=2,y=5时,zmin=252×2+160×5=1304.
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网