题目内容
(2013•滨州一模)已知向量
=(
cos
,cos
),
=(sin
,cos
),函数f(x)=
•
.
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)在锐角△ABC中,A,B,C的对边分别是a,b,c,且满足acosC+
c=b,求f(2B)的取值范围.
| m |
| 3 |
| x |
| 4 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
| m |
| n |
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)在锐角△ABC中,A,B,C的对边分别是a,b,c,且满足acosC+
| 1 |
| 2 |
分析:(Ⅰ)利用两个向量的数量积公式化简 函数f(x)=
•
的解析式为 sin(
+
)+
,可得函数的最小正周期4π.令 2kπ+
≤
+
≤2kπ+
,k∈z,求得 x的范围,即可求得故函数的单调减区间.
(Ⅱ)由余弦定理化简可得b2+c2-a2=bc,可得cosA=
,求得 A=
,可得B+C=
,再由三角形为锐角三角形可得
<B+
<
,再根据正弦函数的定义域和值域求得f(2B)=sin(B+
)+
的取值范围.
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 2 |
| x |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
(Ⅱ)由余弦定理化简可得b2+c2-a2=bc,可得cosA=
| 1 |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| 1 |
| 2 |
解答:解:(Ⅰ)∵函数f(x)=
•
=
sin
cos
+cos2
=
sin
+
cos
+
=sin(
+
)+
,
故函数的最小正周期为
=4π.
令 2kπ+
≤
+
≤2kπ+
,k∈z,求得 4kπ+
≤x≤4kπ+
,k∈z,
故函数的单调减区间为[4kπ+
,4kπ+
],k∈z.
(Ⅱ)在锐角△ABC中,∵acosC+
c=b,由余弦定理可得 a•
+
=b.
化简可得b2+c2-a2=bc,∴cosA=
=
,∴A=
.
∴B+C=
,∴
-
=
<B<
,∴
<B+
<
,∴
<sin(B+
)≤1
f(2B)=sin(B+
)+
∈(
,
],即f(2B)的取值范围为(
,
].
| m |
| n |
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| ||
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| x |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
故函数的最小正周期为
| 2π | ||
|
令 2kπ+
| π |
| 2 |
| x |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| 2π |
| 3 |
| 8π |
| 3 |
故函数的单调减区间为[4kπ+
| 2π |
| 3 |
| 8π |
| 3 |
(Ⅱ)在锐角△ABC中,∵acosC+
| 1 |
| 2 |
| a2+b2-c2 |
| 2ab |
| c |
| 2 |
化简可得b2+c2-a2=bc,∴cosA=
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
| π |
| 3 |
∴B+C=
| 2π |
| 3 |
| 2π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
| ||
| 2 |
| π |
| 6 |
f(2B)=sin(B+
| π |
| 6 |
| 1 |
| 2 |
1+
| ||
| 2 |
| 3 |
| 2 |
1+
| ||
| 2 |
| 3 |
| 2 |
点评:本题主要考查两个向量的数量积公式的应用,两角和差的正弦函数,余弦定理的应用,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目