题目内容
已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=| 1 |
| an•an+1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
| 1 |
| 6 |
分析:(Ⅰ)由题意知an=an-1+2n-1(n≥3)(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n+1.
(Ⅱ)由于bnf(n)=
-2n-1=
(
-
).故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
[(
-
)+(
-
)+…+(
-
)],由此可证明Tn=b1f(1)+b2f(2)+…+bnf(n)<
(n≥1).
(Ⅱ)由于bnf(n)=
| 1 |
| (2n+1)(2n+1+1) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 1+22 |
| 1 |
| 1+22 |
| 1 |
| 1+23 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
| 1 |
| 6 |
解答:解:(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3)
即an=an-1+2n-1(n≥3)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1.
(Ⅱ)由于bnf(n)=
-2n-1
=
-
=
(
-
).
故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
) <
-
=
.
即an=an-1+2n-1(n≥3)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1.
(Ⅱ)由于bnf(n)=
| 1 |
| (2n+1)(2n+1+1) |
=
| 1 |
| 2 |
| (2n+1+1)-(2n+1) |
| (2n+1)(2n+1+1) |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 1+22 |
| 1 |
| 1+22 |
| 1 |
| 1+23 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 2n+1+1 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 6 |
点评:本题考查数列的性质和综合应用,解题时要认真审题.仔细解答.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|