题目内容
将函数y=sinx-A.
B.
C.
D.
【答案】分析:利用两角和与差的三角函数化简函数的表达式,然后利用平移变换的法则,结合函数的对称性,求出a的最小值.
解答:解:因为函数y=sinx-
cosx=2sin(x-
)图象沿x轴向右平移a个单位(a>0),得到y=2sin(x-a-
)
令-a-
=-
,∴a=
,
此时y=2sin(x-
-
)=-2cosx.图象关于y轴对称,
所以a的最小值为
∴选择C
点评:本题考查两角和与差的三角函数,三角函数的图象的变换,基本知识的考查.
解答:解:因为函数y=sinx-
令-a-
此时y=2sin(x-
所以a的最小值为
∴选择C
点评:本题考查两角和与差的三角函数,三角函数的图象的变换,基本知识的考查.
练习册系列答案
相关题目