题目内容
设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若(CUA)∩B=∅,m= .
【答案】分析:先化简集合A,B,再结合题中条件:“(CUA)∩B=φ”推知集合B中元素的特点即可解决.
解答:解:∵A={x|x2+3x+2=0}={-1,-2},
x2+(m+1)x+m=0得:
x=-1或x=-m.
∵(CUA)∩B=φ,
∴集合B中只能有元素-1或-2,
∴m=1或2
故答案为1或2.
点评:本题主要考查了交、并、补集的混合运算、空集的含义,属于基础题.
解答:解:∵A={x|x2+3x+2=0}={-1,-2},
x2+(m+1)x+m=0得:
x=-1或x=-m.
∵(CUA)∩B=φ,
∴集合B中只能有元素-1或-2,
∴m=1或2
故答案为1或2.
点评:本题主要考查了交、并、补集的混合运算、空集的含义,属于基础题.
练习册系列答案
相关题目
设U=R,集合A={y|y=
,x≥1},B={x∈Z|x2-4≤0},则下列结论正确的是( )
| x-1 |
| A、A∩B={-2,-1} |
| B、(?UA)∪B=(-∞,0) |
| C、A∪B=[0,+∞) |
| D、(?UA)∩B={-2,-1} |