题目内容
已知四棱柱ABCD-A1B1C1D1,侧棱与底面垂直,底面ABCD是菱形且∠BAD=60°,侧棱与底面边长均为2,则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为( )
A.
| B.2 | C.
| D.
|
如图,四棱柱ABCD-A1B1C1D1中,
∵侧棱与底面垂直,∴B1B⊥面ABCD,
∵AC?面ABCD,∴B1B⊥AC.
连接AC、BD,设AC∩BD=O,连接B1O,
∵ABCD是菱形,∴AC⊥BD,
∵B1B⊥AC,又BB1∩BD=B,
∴AC⊥面B1BD,
∵OB1?面B1BD,∴AC⊥OB1.
∴∠B1OB为二面角B1-AC-B的平面角,
即面AB1C与底面ABCD所成的角,
∵面A1B1C1D1∥面ABCD,
亦即为面AB1C与底面A1B1C1D1所成的角.
∵底面ABCD是菱形,且∠BAD=60°,∴∠BAO=30°,
在直角三角形AOB中,∵∠BAO=30°,AB=2,∴OB=1.
再在直角三角形OBB1中,∵OB=1,BB1=2,∴OB1=
.
∴sin∠B1OB=
=
=
.
∴则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为
.
故选D.

∵侧棱与底面垂直,∴B1B⊥面ABCD,
∵AC?面ABCD,∴B1B⊥AC.
连接AC、BD,设AC∩BD=O,连接B1O,
∵ABCD是菱形,∴AC⊥BD,
∵B1B⊥AC,又BB1∩BD=B,
∴AC⊥面B1BD,
∵OB1?面B1BD,∴AC⊥OB1.
∴∠B1OB为二面角B1-AC-B的平面角,
即面AB1C与底面ABCD所成的角,
∵面A1B1C1D1∥面ABCD,
亦即为面AB1C与底面A1B1C1D1所成的角.
∵底面ABCD是菱形,且∠BAD=60°,∴∠BAO=30°,
在直角三角形AOB中,∵∠BAO=30°,AB=2,∴OB=1.
再在直角三角形OBB1中,∵OB=1,BB1=2,∴OB1=
| 5 |
∴sin∠B1OB=
| BB1 |
| OB1 |
| 2 | ||
|
2
| ||
| 5 |
∴则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为
2
| ||
| 5 |
故选D.
练习册系列答案
相关题目