搜索
题目内容
写出“若x≠3且x≠2,则x
2
-5x+6≠0”的否命题:______.
试题答案
相关练习册答案
“若x≠3且x≠2,则x
2
-5x+6≠0”的否命题就将条件和结论同时否定,则否命题是“若x=3或x=2则x
2
-5x+6=0”
故答案为:若x=3或x=2则x
2
-5x+6=0
练习册系列答案
初中优选测试卷系列答案
高效课堂宝典训练系列答案
畅响双优卷系列答案
初中满分冲刺卷系列答案
52045单元与期末系列答案
精彩考评单元测评卷系列答案
导学案快乐学习系列答案
孟建平各地期末试卷精选系列答案
名师三导学练考系列答案
轻松小卷系列答案
相关题目
已知f(x)=a
2
x-
1
2
x
3
,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R
*
,则
a+b
2
≥
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x
1
时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x
1
为首项的等差数列.
写出命题
“
若
x
≥2
且
y
≥3
,则
x
+
y
≥5”
的逆命题、否命题,逆否命题
.
并判断其真假
.
已知f(x)=a
2
x-
1
2
x
3
,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R
*
,则
a+b
2
≥
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x
1
时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x
1
为首项的等差数列.
已知f(x)=a
2
x-
x
3
,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R
*
,则
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x
1
时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x
1
为首项的等差数列.
已知f(x)=a
2
x-
x
3
,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R
*
,则
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x
1
时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x
1
为首项的等差数列.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案