题目内容
如果数列{an}满足:a1=3,
-
=5(n∈N*),则an=
.
| 1 |
| an+1 |
| 1 |
| an |
| 3 |
| 15n-14 |
| 3 |
| 15n-14 |
分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.
解答:解:∵根据所给的数列的递推式
-
=5
∴数列{
}是一个公差是5的等差数列,
∵a1=3,
∴
=
,
∴数列的通项是
=
+5(n-1)=
+5n-5=5n-
∴an=
故答案为:
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
∵a1=3,
∴
| 1 |
| a1 |
| 1 |
| 3 |
∴数列的通项是
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 3 |
| 14 |
| 3 |
∴an=
| 3 |
| 15n-14 |
故答案为:
| 3 |
| 15n-14 |
点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.
练习册系列答案
相关题目