题目内容
已知α⊥γ,β⊥γ,α∩β=l,求证:l⊥γ.
∵平面α∩平面β=l,
∴在l任意取一点P,过P在平面α内作PA⊥m.
∵α⊥平面γ,α∩γ=m,
∴PA⊥γ,
过P在平面β内作PB⊥n,
∵β⊥平面γ,β∩γ=n,
∴PB⊥γ,
∴PA,PB重合即为l,
∴l⊥γ.
分析:在l任意取点P,利用平面与平面垂直的性质定理,分别在平面α,β内找到一条直线PA,PB都垂直平面γ,根据与一个平面垂直的直线只有一条得到PA,PB重合即为l,即可.
点评:本题考查平面与平面垂直的性质:两平面垂直能推出直线与平面垂直;考查与一个平面垂直的直线只有一条,属于基础题.
练习册系列答案
相关题目
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;
(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.
(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;
(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.
| ξ | 0 | 1 | 2 | 3 |
| P | 0.021 | 0.027 | 0.243 | 0.729 |
已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )
A、(-∞,-
| ||||
B、[-
| ||||
C、(-∞,-
| ||||
D、(-
|
已知函数f(x)=
若f(2-a2)>f(a),则实数a的取值范围是( )
|
| A、(-∞,-1)∪(2,+∞) |
| B、(-1,2) |
| C、(-2,1) |
| D、(-∞,-2)∪(1,+∞) |