题目内容
数学归纳法证明(n+1)+(n+2)+…+(n+n)=
的第二步中,当n=k+1时等式左边与n=k时等式左边的差等于______.
| n(3n+1) |
| 2 |
由题意,n=k时,则(k+1)+(k+2)+…+(k+k)=
当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)
=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)
=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)
=
+3k+2
∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2
故答案为 3k+2
| k(3k+1) |
| 2 |
当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)
=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)
=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)
=
| k(3k+1) |
| 2 |
∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2
故答案为 3k+2
练习册系列答案
相关题目