题目内容
从名男同学,名女同学中选出名同学组队参加课外活动,要求男、女同学都有,则不同的方案个数共有( )
A.140 B.100 C.80 D.70
D
选择合适的抽样方法抽样,写出抽样过程.
(1)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样;
(2)有甲厂生产的300个篮球,抽取30个入样.
“”是“方程表示焦点在y轴上的椭圆”的( )
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D) 既不充分也不必要条件
已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.
设变量满足约束条件,则目标函数的最大值为( )
A. B. C. D.
用四个不同数字组成四位数,所有这些四位数中的数字的总和为,则= 。
已知函数.
(1)当时,求函数的单调区间;
(2)若函数在处取得极值,对,恒成立,求实数的取值范围;
(3)当时,求证:.
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
已知函数在区间(0,1)内任取两个实数p,q,且p≠q,不等式恒成立,则实数的取值范围为