题目内容
若向量
与
的夹角都是60°,且|
|=|
|=1.
(1)求(
-2
)•(
+
)的值;
(2)求(
-2
)和(
+
)夹角的余弦值.
| a |
| b |
| a |
| b |
(1)求(
| a |
| b |
| a |
| b |
(2)求(
| a |
| b |
| a |
| b |
(1)(
-2
)•(
+
)=|
|2-
•
-2|
|2=1-
-2=-
;
(2)设夹角为θ,则cosθ=
|
-2
|2=(
-2
)2=|
|2-4
•
+4|
|2=3
|
+
|2=(
+
)2=|
|2+2
•
+|
|2=3
∴cosθ=
=-
.
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| 1 |
| 2 |
| 3 |
| 2 |
(2)设夹角为θ,则cosθ=
(
| ||||||||
|
|
|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
∴cosθ=
-
| ||||
|
| 1 |
| 2 |
练习册系列答案
相关题目