题目内容
(2012•广东)对任意两个非零的平面向量
和
,定义
•
=
.若两个非零的平面向量
,
满足
与
的夹角θ∈(
,
),且
•
和
•
都在集合{
|n∈Z}中,则
•
=( )
| α |
| β |
| α |
| β |
| ||||
|
| a |
| b |
| a |
| b |
| π |
| 4 |
| π |
| 2 |
| a |
| b |
| b |
| a |
| n |
| 2 |
| a |
| b |
分析:先求出
°
=
,n∈N,
°
=
,m∈N,再由cos2θ=
∈( 0,
),故 m=n=1,从而求得
°
=
的值.
| a |
| b |
| n |
| 2 |
| b |
| a |
| m |
| 2 |
| mn |
| 4 |
| 1 |
| 2 |
| a |
| b |
| n |
| 2 |
解答:解:∵
°
=
=
=
=
=
,n∈N.
同理可得
°
=
=
=
=
,m∈N.
再由
与
的夹角θ∈(
,
),可得cos2θ=
∈( 0,
),故 m=n=1,
∴
°
=
=
,
故选D.
| a |
| b |
| ||||
|
| ||||
|
|
| ||||
|
|
|
| ||
|
|
| n |
| 2 |
同理可得
| b |
| a |
| ||||
|
|
| ||||
|
|
|
| ||
|
|
| m |
| 2 |
再由
| a |
| b |
| π |
| 4 |
| π |
| 2 |
| mn |
| 4 |
| 1 |
| 2 |
∴
| a |
| b |
| n |
| 2 |
| 1 |
| 2 |
故选D.
点评:本题主要考查两个向量的数量积的定义,求得 m=n=1,是解题的关键,属于中档题.
练习册系列答案
相关题目