题目内容
以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
| 房屋面积x(m2) | 115 | 110 | 80 | 135 | 105 |
| 销售价格y(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线.
(1)
数据对应的散点图如图所示:
![]()
(2)所求回归直线方程为
=0.196 2x+1.814 2.
解析:
(1)数据对应的散点图如图所示:
![]()
(2)
=109,
=23.2,
=60 975,
=12 952,,
=
≈0.196 2
=
-![]()
≈1.814 2
∴所求回归直线方程为
=0.196 2x+1.814 2.
练习册系列答案
相关题目
以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(参考公式:
=
,
=
-
,
x2i=60975,
xiyi=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952)
| 房屋面积(m2) | 115 | 110 | 80 | 135 | 105 |
| 销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(参考公式:
| ? |
| b |
| |||||||
|
| ? |
| a |
. |
| y |
| ? |
| b |
. |
| x |
| 5 |
| i=1 |
| 5 |
| i=1 |
以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积(m2) | 115 | 110 | 80 | 135 | 105 |
销售价格(万元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150 m2时的销售价格.