题目内容

9.已知抛物线C1的焦点与椭圆C2:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1的右焦点重合,抛物线C1的顶点在坐标原点,过点M(4,0)的直线l与抛物线C1分别相交于A、B两点.
(Ⅰ)写出抛物线C1的标准方程;
(Ⅱ)求△ABO面积的最小值.

分析 (Ⅰ)求得椭圆的右焦点,可得抛物线的p=2,进而得到抛物线的方程;
(Ⅱ)设直线AB的方程为x=my+4,代入抛物线方程,运用韦达定理,由△ABO面积为S=S△OAM+S△OBM=$\frac{1}{2}$•|OM|•|y1-y2|,代入韦达定理,化简由不等式的性质,即可得到最小值.

解答 解:(Ⅰ)椭圆C2:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1的右焦点为(1,0),
设抛物线的方程为y2=2px(p>0),
即有$\frac{p}{2}$=1,解得p=2,
则抛物线的方程为y2=4x;
(Ⅱ)设直线AB的方程为x=my+4,
代入抛物线方程可得,
y2-4my-16=0,
判别式为16m2+64>0恒成立,
y1+y2=4m,y1y2=-16,
则△ABO面积为S=S△OAM+S△OBM=$\frac{1}{2}$•|OM|•|y1-y2|
=2|y1-y2|=2$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$
=2$\sqrt{16{m}^{2}+64}$≥2$\sqrt{64}$=16,
当且仅当m=0时,△ABO的面积取得最小值16.

点评 本题考查椭圆和抛物线的方程和性质,考查直线和抛物线的方程的联立,运用韦达定理,同时考查三角形的面积的最值的求法,注意运用不等式的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网