题目内容
【题目】已知椭圆
:
的一个焦点为
,点
在
上.
(1)求椭圆
的方程;
(2)若直线
:
与椭圆
相交于
,
两点,问
轴上是否存在点
,使得
是以
为直角顶点的等腰直角三角形?若存在,求点
的坐标;若不存在,说明理由.
【答案】(1)
(2)见解析
【解析】
先求出c的值,再根据
,又
,即可得到椭圆的方程;
假设y轴上存在点
,
是以M为直角顶点的等腰直角三角形,设
,
,线段AB的中点为
,根据韦达定理求出点N的坐标,再根据
,
,即可求出m的值,可得点M的坐标
由题意可得
,点
在C上,
,
又
,
解得
,
,
椭圆C的方程为
,
假设y轴上存在点
,
是以M为直角顶点的等腰直角三角形,
设
,
,线段AB的中点为
,
由
,消去y可得
,
,解得
,
,
,
,
,
,
依题意有
,
,
由
,可得
,可得
,
由
可得
,
,
,
代入上式化简可得
,
则
,
解得
,
当
时,点
满足题意,当
时,点
满足题意
【题目】某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业以下简称外卖甲,外卖乙的经营情况进行了调查,调查结果如表:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
外卖甲日接单x(百单 | 5 | 2 | 9 | 8 | 11 |
外卖乙日接单y(百单 | 2.2 | 2.3 | 10 | 5 | 15 |
(Ⅰ)据统计表明,y与x之间具有线性相关关系.经计算求得y与x之间的回归方程为
,假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围;(x值精确到0.01)
(Ⅱ)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.
【题目】自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在
且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在
使用自由购的顾客中,随机抽取3人进一步了解情况,用
表示这3人中年龄在
的人数,求随机变量
的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.