题目内容
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn.
(Ⅰ)求证:数列{
}为等差数列,并求通项bn;
(Ⅱ)试判断数列{Tn}的单调性,并证明.
(Ⅲ)求证:当n≥2时,S2n≥
.
(Ⅰ)求证:数列{
| 1 |
| bn |
(Ⅱ)试判断数列{Tn}的单调性,并证明.
(Ⅲ)求证:当n≥2时,S2n≥
| 7n+11 |
| 12 |
分析:(I)将两个已知等式结合得到关于数列{bn}的项的递推关系,构造新数列,利用等差数列的通项公式求出
,进一步求出bn.
(II)表示出Tn,Tn+1,求出Tn+1-Tn,通过放缩法,判断出此差的符号,判断出Tn+1,Tn两者的大小,即可得到结论;
(Ⅲ)利用数学归纳法证明即可.
| 1 |
| bn |
(II)表示出Tn,Tn+1,求出Tn+1-Tn,通过放缩法,判断出此差的符号,判断出Tn+1,Tn两者的大小,即可得到结论;
(Ⅲ)利用数学归纳法证明即可.
解答:(Ⅰ)证明:由bn=an-1,得an=bn+1,代入2an=1+anan+1,
得2(bn+1)=1+(bn+1)(bn+1+1),
整理,得bnbn+1+bn+1-bn=0,
从而有
-
=1,
∵b1=a1-1=2-1=1,
∴数列{
}是首项为1,公差为1的等差数列,
∴
=n,∴bn=
;
(Ⅱ)解:数列{Tn}单调递增
∵Sn=1+
+…+
,
∴Tn=S2n-Sn=
+
+…+
,
∴Tn+1=
+
+…+
+
+
,
∴Tn+1-Tn=
+
-
>
+
-
=0,
∴Tn+1>Tn,
∴数列{Tn}单调递增;
(Ⅲ)证明:①当n=2时,S22=1+
+
+
=
=
,结论成立;
②设n=k时,结论成立,即1+
+…+
≥
,
则n=k+1时,S2k+1=1+
+…+
+
+…+
≥
+
+…+
>
+
+
=
,即n=k+1时,结论成立
∴当n≥2时,S2n≥
.
得2(bn+1)=1+(bn+1)(bn+1+1),
整理,得bnbn+1+bn+1-bn=0,
从而有
| 1 |
| bn+1 |
| 1 |
| bn |
∵b1=a1-1=2-1=1,
∴数列{
| 1 |
| bn |
∴
| 1 |
| bn |
| 1 |
| n |
(Ⅱ)解:数列{Tn}单调递增
∵Sn=1+
| 1 |
| 2 |
| 1 |
| n |
∴Tn=S2n-Sn=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
∴Tn+1=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴Tn+1-Tn=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
∴Tn+1>Tn,
∴数列{Tn}单调递增;
(Ⅲ)证明:①当n=2时,S22=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 25 |
| 12 |
| 7×2+11 |
| 12 |
②设n=k时,结论成立,即1+
| 1 |
| 2 |
| 1 |
| 2k |
| 7k+11 |
| 12 |
则n=k+1时,S2k+1=1+
| 1 |
| 2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+1 |
| 7k+11 |
| 12 |
| 1 |
| 2k+1 |
| 1 |
| 2k+1 |
| 7k+11 |
| 12 |
| 1 |
| 3 |
| 1 |
| 4 |
| 7(k+1)+11 |
| 12 |
∴当n≥2时,S2n≥
| 7n+11 |
| 12 |
点评:本题考查了数列和不等式的综合应用,考查数列的通项,考查数列的单调性,考查不等式的证明,综合性强.
练习册系列答案
相关题目