题目内容
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,则a2013=( )
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
A.(
| B.(
| C.(
| D.(
|
由题意可得f1(0)=
=2,
a1=
=
=
,
由因为fn+1(x)=f1[fn(x)],
所以an+1=
=
=
=
=-
•
=-
an,
故数列{an}为公比为-
的等比数列,
故a2013=a1×(-
)2012=
×(-
)2012=(
)2014
故选C
| 2 |
| 1+0 |
a1=
| f1(0)-1 |
| f1(0)+2 |
| 2-1 |
| 2+2 |
| 1 |
| 4 |
由因为fn+1(x)=f1[fn(x)],
所以an+1=
| fn+1(0)-1 |
| fn+1(0)+2 |
| f1[fn(0)]-1 |
| f1[fn(0)]+2 |
| ||
|
| 1-fn(0) |
| 4+2fn(0) |
| 1 |
| 2 |
| fn(0)-1 |
| fn(0)+2 |
| 1 |
| 2 |
故数列{an}为公比为-
| 1 |
| 2 |
故a2013=a1×(-
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
故选C
练习册系列答案
相关题目