题目内容
在ABC中,内角A,B,C的对边分别为a,b,c,已知
=
(Ⅰ)求
的值;
(Ⅱ)若cosB=
,b=2,求△ABC的面积S.
| cosA-2cosC |
| cosB |
| 2c-a |
| b |
(Ⅰ)求
| sinC |
| sinA |
(Ⅱ)若cosB=
| 1 |
| 4 |
(Ⅰ)由正弦定理设
=
=
=k
则
=
=
=
整理求得sin(A+B)=2sin(B+C)
又A+B+C=π
∴sinC=2sinA,即
=2
(Ⅱ)由余弦定理可知cosB=
=
①
由(Ⅰ)可知
=
=2②
①②联立求得c=2,a=1
sinB=
=
∴S=
acsinB=
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
则
| 2c-a |
| b |
| 2ksinC-ksinA |
| ksinB |
| 2sinC-sinA |
| sinB |
| cosA-2cosC |
| cosB |
整理求得sin(A+B)=2sin(B+C)
又A+B+C=π
∴sinC=2sinA,即
| sinC |
| sinA |
(Ⅱ)由余弦定理可知cosB=
| a2+c2-b2 |
| 2ac |
| 1 |
| 4 |
由(Ⅰ)可知
| sinC |
| sinA |
| c |
| a |
①②联立求得c=2,a=1
sinB=
1-
|
| ||
| 4 |
∴S=
| 1 |
| 2 |
| ||
| 4 |
练习册系列答案
相关题目