题目内容
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式.
(3)在满足(2)的条件下,求数列{
}的前n项和Tn
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式.
(3)在满足(2)的条件下,求数列{
| 2n+1 |
| bn |
(1)证明:当n=1时,a1=S1=(m+1)-ma1,解得a1=1.
当n≥2时,an=Sn-Sn-1=man-1-man.
即(1+m)an=man-1.
∵m为常数,且m>0,∴
=
(n≥2).
∴数列{an}是首项为1,公比为
的等比数列.
(2)由(1)得,q=f(m)=
,b1=2a1=2.
∵bn=f(bn-1)=
,
∴
=
+1,即
-
=1(n≥2).
∴{
}是首项为
,公差为1的等差数列.
∴
=
+(n-1)•1=
,即bn=
(n∈N*).
(3)由(2)知bn=
,则
=2n(2n-1).
所以Tn=
+
+
++
+
,
即Tn=21×1+22×3+23×5++2n-1×(2n-3)+2n×(2n-1),①
则2Tn=22×1+23×3+24×5++2n×(2n-3)+2n+1×(2n-1),②
②-①得Tn=2n+1×(2n-1)-2-23-24--2n+1,
故Tn=2n+1×(2n-1)-2-
=2n+1×(2n-3)+6.
当n≥2时,an=Sn-Sn-1=man-1-man.
即(1+m)an=man-1.
∵m为常数,且m>0,∴
| an |
| an-1 |
| m |
| 1+m |
∴数列{an}是首项为1,公比为
| m |
| 1+m |
(2)由(1)得,q=f(m)=
| m |
| 1+m |
∵bn=f(bn-1)=
| bn-1 |
| 1+bn-1 |
∴
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| bn-1 |
∴{
| 1 |
| bn |
| 1 |
| 2 |
∴
| 1 |
| bn |
| 1 |
| 2 |
| 2n-1 |
| 2 |
| 2 |
| 2n-1 |
(3)由(2)知bn=
| 2 |
| 2n-1 |
| 2n+1 |
| bn |
所以Tn=
| 22 |
| b1 |
| 23 |
| b2 |
| 24 |
| b3 |
| 2n |
| bn-1 |
| 2n+1 |
| bn |
即Tn=21×1+22×3+23×5++2n-1×(2n-3)+2n×(2n-1),①
则2Tn=22×1+23×3+24×5++2n×(2n-3)+2n+1×(2n-1),②
②-①得Tn=2n+1×(2n-1)-2-23-24--2n+1,
故Tn=2n+1×(2n-1)-2-
| 23(1-2n-1) |
| 1-2 |
练习册系列答案
相关题目