题目内容
| lim |
| n→∞ |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| 3 |
| n2+1 |
| 2n |
| n2+1 |
分析:首先求极限
(
+
+
+…+
)发现式子上面各项是等差数列,即可求和,得到
容易求得它的极限为2,即为答案.
| lim |
| n→∞ |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| 3 |
| n2+1 |
| 2n |
| n2+1 |
| 2n2+n |
| n2+1 |
解答:解:设A=
+
+
+…+
=
=
所以
(
+
+
+…+
)=
A=
=2
故答案为2.
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| 3 |
| n2+1 |
| 2n |
| n2+1 |
| 1+2+3+…+2n |
| n2+1 |
| 2n2+n |
| n2+1 |
所以
| lim |
| n→∞ |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| 3 |
| n2+1 |
| 2n |
| n2+1 |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 2n2+n |
| n2+1 |
故答案为2.
点评:此题主要考查极限及其运算的问题,其中涉及到等差数列的求和问题,属于综合题,有一定的计算量,为中档题.
练习册系列答案
相关题目