题目内容
在极坐标系中,圆C的方程为ρ=2
sin
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线
的参数方程为
(t为参数),判断直线
和圆C的位置关系.
直线l和⊙C相交.
试题分析:先利用三角函数正弦的和角公式将圆C的极坐标方程化为:ρ=2(sinθ+cosθ),再将两边同时乘以ρ得到ρ2=2(ρsinθ+ρcosθ),又因为是以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,所以只须将
试题解析:消去参数t,得直线l的直角坐标方程为y=2x+1;
ρ=2
两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
得圆C的直角坐标方程为(x-1)2+(y-1)2=2,
圆心C到直线l的距离d=
所以直线l和⊙C相交.
练习册系列答案
相关题目