题目内容

已知点P是椭圆
x2
8
+
y2
3
=1上的一点,F1、F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积是
3
3
分析:利用椭圆的定义可得|PF1|+|PF2|=4
2
,又|F1F2|=2
5
,∠F1PF2=60°,利用余弦定理可求得|PF1|•|PF2|,从而可求得△F1PF2的面积.
解答:解:∵P是椭圆
x2
8
+
y2
3
=1上的一点,F1、F2是椭圆的两个焦点,∠F1PF2=60°,
∴|PF1|+|PF2|=4
2
,|F1F2|=2
5

在△F1PF2中,由余弦定理得:
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2
=(|PF1|+|PF2|)2-2|PF1|•|PF2|-2|PF1|•|PF2|cos60°
=32-2|PF1|•|PF2|-2|PF1|•|PF2
1
2

=32-3|PF1|•|PF2|=20,
∴|PF1|•|PF2|=4,
S△F1PF2=
1
2
|PF1|•|PF2|sin60°=
1
2
×4×
3
2
=
3

故答案为:
3
点评:本题考查椭圆的简单性质与标准方程,考查余弦定理与三角形的面积,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网