题目内容

不等式|2x-1-log3(x-1)|<|2x-1|+|log3(x-1)|的解集是
(2,+∞)
(2,+∞)
分析:由|2x-1-log3(x-1)|<|2x-1|+|log3(x-1)|⇒2x-1与log3(x-1)同号且为正,从而可求得其解集.
解答:解:∵|2x-1-log3(x-1)|<|2x-1|+|log3(x-1)|?|(2x-1)-log3(x-1)|2<(2x-1)2+log32(x-1)+2(2x-1)•log3(x-1)⇒4(2x-1)•log3(x-1)>0,
2x-1>0
log3(x-1)>0
,解得x>2;或
2x-1<0
log3(x-1)<0
,x∈∅,
∴不等式|2x-1-log3(x-1)|<|2x-1|+|log3(x-1)|的解集是(2,+∞).
故答案为:(2,+∞).
点评:本题考查绝对值不等式,关键在于分析出2x-1与log3(x-1)同正,也是难点所在,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网