题目内容
19.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的方程为$\left\{\begin{array}{l}x={t^2}\\ y=2t\end{array}\right.$(t为参数),直线l的方程为kρcosθ-ρsinθ-k=0(k为实数),若直线l交曲线C于A,B两点,F为曲线C的焦点,则$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$的值为1.分析 曲线C的方程为$\left\{\begin{array}{l}x={t^2}\\ y=2t\end{array}\right.$(t为参数),化为y2=4x,其焦点F(1,0).利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可得出直线l的直角坐标方程:kx-y-k=0.设A(x1,y1),B(x2,y2).与抛物线方程联立可得根与系数的关系,由焦点弦长公式可得|AF|=x1+1,|BF|=x2+1.代入$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$即可得出.
解答 解:曲线C的方程为$\left\{\begin{array}{l}x={t^2}\\ y=2t\end{array}\right.$(t为参数),化为y2=4x,其焦点F(1,0).
直线l的方程为kρcosθ-ρsinθ-k=0(k为实数),kx-y-k=0,化为y=k(x-1).
设A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,化为k2x2-(4+2k2)x+k2=0,
x1+x2=$\frac{4+2{k}^{2}}{{k}^{2}}$,x1x2=1.
∴|AF|=x1+1,|BF|=x2+1.
∴$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$=$\frac{1}{{x}_{1}+1}+\frac{1}{{x}_{2}+1}$=$\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}{x}_{2}+({x}_{1}+{x}_{2})+1}$=$\frac{\frac{4+2{k}^{2}}{{k}^{2}}+2}{1+\frac{4+2{k}^{2}}{{k}^{2}}+1}$=1.
故答案为:1.
点评 本题考查了抛物线参数方程化为普通方程、极坐标方程化为直角坐标方程、抛物线的焦点弦长公式,考查了推理能力与计算能力,属于中档题.
| A. | a>1 | B. | a>-1 | C. | a≤1 | D. | a≤-1 |
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
| x | -1 | 0 | 2 | 3 | 4 |
| f(x) | 1 | 2 | 0 | 2 | 0 |
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
| A. | 78 | B. | 102 | C. | 114 | D. | 120 |