题目内容
2.将函数y=sin2x+cos2x的图象向右平移$\frac{π}{4}$个单位后,所得图象对应的解析式是( )| A. | y=cos2x+sin2x | B. | y=sin2x-cos2x | C. | y=cos2x-sin2x | D. | y=cosxsinx |
分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:将函数y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{4}$个单位后,
所得图象对应的解析式是y=$\sqrt{2}$sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x-$\frac{π}{4}$)=sin2x-cos2x,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,长轴为2$\sqrt{3}$,则椭圆C的方程为( )
| A. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{3}$+y2=1 | C. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1 |
7.
如图,空间四边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=$\frac{2}{3}$$\overrightarrow{OA}$,点N为BC中点,则$\overrightarrow{MN}$等于( )
| A. | $\frac{1}{2}\vec a-\frac{2}{3}\vec b+\frac{1}{2}\vec c$ | B. | $-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$ | C. | $\frac{1}{2}\vec a+\frac{1}{2}\vec b-\frac{1}{2}\vec c$ | D. | $\frac{2}{3}\vec a+\frac{2}{3}\vec b-\frac{1}{2}\vec c$ |
11.将$\root{3}{2^2}$化成分数指数幂为( )
| A. | ${2^{\frac{3}{2}}}$ | B. | $2^{-\frac{1}{2}}$ | C. | $2^{\frac{1}{3}}$ | D. | $2^{\frac{2}{3}}$ |